Albert Einstein

From Wiki 2005
Jump to: navigation, search

Template:Redirect

File:Albert Einstein 1947.jpg
Albert Einstein photographed by Oren J. Turner in 1947.

Albert Einstein (March 14, 1879April 18, 1955) was a German-born Jewish theoretical physicist, who is widely regarded as the greatest scientist of the 20th century. He proposed the theory of relativity and also made major contributions to the development of quantum mechanics, statistical mechanics, and cosmology. He was awarded the 1921 Nobel Prize for Physics for his explanation of the photoelectric effect in 1905 (his "miracle year") and "for his services to Theoretical Physics."

After his general theory of relativity, finally formulated in November 1915, was verified by observation of bending of light by gravity in 1919, Einstein became world-famous, an unusual achievement for a scientist. In his later years, his fame exceeded that of any other scientist in history. In popular culture, his name has become synonymous with great intelligence and even genius.

Einstein himself was deeply concerned with the social impact of scientific discoveries. His reverence for all creation, his belief in the grandeur, beauty, and sublimity of the universe (the primary source of inspiration in science), his awe for the scheme that is manifested in the material universe—all of these show through in his work and philosophy.

Contents

Biography

File:Young Albert Einstein.jpg
Young Einstein before the Einsteins moved from Germany to Italy.

Youth and college

Einstein was born on March 14, 1879 at Ulm in Baden-Württemberg, Germany, about 100 km east of Stuttgart. His parents were Hermann Einstein, a featherbed salesman who later ran an electrochemical works, and Pauline, whose maiden name was Koch. They were married in Stuttgart-Bad Cannstatt. The family was Jewish (non-observant); Albert attended a Catholic elementary school and, at the insistence of his mother, was given violin lessons.

When Albert was five, his father showed him a pocket compass, and Einstein realized that something in "empty" space acted upon the needle; he would later describe the experience as one of the most revelatory of his life. He built models and mechanical devices for fun, and was moved straight to second grade when he started school, aged six, but was also considered a sceptic and a dreamer. He later credited his development of the theory of relativity to this slowness, saying that by pondering space and time later than most children, he was able to apply a more developed intellect. Some have speculated that Einstein may have exhibited some traits of mild forms of autism, but others have disputed this.

Einstein attended the Luitpold Gymnasium in Munich where he received a relatively progressive education. He began to learn mathematics around age twelve. There is a recurring rumor that he failed mathematics later in his education, but this is untrue; a change in the way grades were assigned caused confusion years later. Two of his uncles fostered his intellectual interests during his late childhood and early adolescence by suggesting and providing books on science, mathematics and philosophy.

In 1894, following the failure of Hermann's electrochemical business, the Einsteins moved from Munich to Pavia, Italy (near Milan). During this year, Einstein's first scientific work was written (called "The Investigation of the State of Aether in Magnetic Fields"). Albert remained behind in Munich lodgings to finish school, completing only one term before leaving the gymnasium in spring 1895 to rejoin his family in Pavia. He quit without telling his parents and a year and a half prior to final examinations, Einstein convinced the school to let him go with a medical note from a friendly doctor, but this meant he had no secondary-school certificate (Abitur).[1] He had, however, been diligent enough to obtain a reference from his maths teacher, certifying that his command of mathematics was equivalent to an Abitur.

Despite excelling in the mathematics and science portion, his failure of the liberal arts portion of the Eidgenössische Technische Hochschule (ETH, Swiss Federal Institute of Technology, in Zurich) entrance exam the following year was a setback; his family sent him to Aarau, Switzerland, to finish secondary school, where he received his diploma in September 1896. During this time he lodged with Professor Jost Winteler's family and became enamoured with Marie, their daughter, his first sweetheart. Albert's sister Maja was to later marry their son Paul, and his friend Michele Besso married their other daughter Anna.[2] Einstein subsequently enrolled at the Eidgenössische Technische Hochschule in October and moved to Zurich, while Marie moved to Olsberg for a teaching post. The same year, he renounced his Württemberg citizenship and became stateless.

In the spring of 1896, the Serbian Mileva Marić started initially as a medical student at the University of Zurich, but after a term switched to the same section as Einstein as the only woman that year to study for the same diploma. Einstein's relationship with Mileva developed into romance over the next few years.

In 1900, he was granted a teaching diploma by the Eidgenössische Technische Hochschule (ETH Zurich) and was accepted as a Swiss citizen in 1901. He kept his Swiss passport for his whole life. During this time Einstein discussed his scientific interests with a group of close friends, including Mileva. He and Mileva had an illegitimate daughter Lieserl, born in January 1902.

Work and doctorate

File:Einstein patentoffice.jpg
Einstein in 1905, when he wrote the "Annus Mirabilis Papers"

Upon graduation, Einstein could not find a teaching post, mostly because his brashness as a young man had apparently irritated most of his professors. The father of a classmate helped him obtain employment as a technical assistant examiner at the Swiss Patent Office [3] in 1902. There, Einstein judged the worth of inventors' patent applications for devices that required a knowledge of physics to understand — in particular he was chiefly charged to evaluate patents relating to electromagnetic devices.[4] He also learned how to discern the essence of applications despite sometimes poor descriptions, and was taught by the director how "to express [him]self correctly". He occasionally rectified their design errors while evaluating the practicality of their work.

Einstein married Mileva Marić on January 6, 1903. Einstein's marriage to Marić, who was a mathematician, was both a personal and intellectual partnership: Einstein referred to Mileva as "a creature who is my equal and who is as strong and independent as I am". Ronald W. Clark, a biographer of Einstein, claimed that Einstein depended on the distance that existed in his and Mileva's marriage in order to have the solitude necessary to accomplish his work; he required intellectual isolation. Abram Joffe, a Soviet physicist who knew Einstein, in an obituary of Einstein, wrote, "The author of [the papers of 1905] was ... a bureaucrat at the Patent Office in Bern, Einstein-Marić" and this has recently been taken as evidence of a collaborative relationship. However, according to Alberto A. Martínez of the Center for Einstein Studies at Boston University, Joffe only ascribed authorship to Einstein, as he believed that it was a Swiss custom at the time to append the spouse's last name to the husband's name.[5] Whatever the truth, the extent of her influence on Einstein's work is a highly controversial and debated question.

On May 14, 1904, the couple's first son, Hans Albert Einstein, was born. In 1903, Einstein's position at the Swiss Patent Office had been made permanent, though he was passed over for promotion until he had "fully mastered machine technology".[6] He obtained his doctorate after submitting his thesis "A new determination of molecular dimensions" ("Eine neue Bestimmung der Moleküldimensionen") in 1905.

That same year, he wrote four articles that provided the foundation of modern physics, without much scientific literature to which he could refer or many scientific colleagues with whom he could discuss the theories. Most physicists agree that three of those papers (on Brownian motion, the photoelectric effect, and special relativity) deserved Nobel Prizes. Only the paper on the photoelectric effect would be mentioned by the Nobel committee in the award. This is ironic, not only because Einstein is far better-known for relativity, but also because the photoelectric effect is a quantum phenomenon, and Einstein became somewhat disenchanted with the path quantum theory would take. What makes these papers remarkable is that, in each case, Einstein boldly took an idea from theoretical physics to its logical consequences and managed to explain experimental results that had baffled scientists for decades.

Annus Mirabilis Papers

Template:Details

Einstein submitted the series of papers to the "Annalen der Physik". They are commonly referred to as the "Annus Mirabilis Papers" (from annus mirabilis, Latin for "year of wonders"). The International Union of Pure and Applied Physics (IUPAP) is commemorating the 100th year of the publication of Einstein's extensive work in 1905 as the 'World Year of Physics 2005'.

The first paper, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", ("Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt") proposed that "energy quanta" (which are essentially what we now call photons) were real, and showed how they could be used to explain such phenomena as the photoelectric effect. This paper was specifically cited for his Nobel Prize. Max Planck had made the formal assumption that energy was quantized in deriving his black-body radiation law, published in 1901, but had considered this to be no more than a mathematical trick.

His second article in 1905, named "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", ("Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen") covered his study of Brownian motion, and provided empirical evidence for the existence of atoms. Before this paper, atoms were recognized as a useful concept, but physicists and chemists hotly debated whether atoms were real entities. Einstein's statistical discussion of atomic behavior gave experimentalists a way to count atoms by looking through an ordinary microscope. Wilhelm Ostwald, one of the leaders of the anti-atom school, later told Arnold Sommerfeld that he had been converted to a belief in atoms by Einstein's complete explanation of Brownian motion.

Einstein's third paper that year, "On the Electrodynamics of Moving Bodies" ("Zur Elektrodynamik bewegter Körper"), was published in September 1905. This paper introduced the special theory of relativity, a theory of time, distance, mass and energy which was consistent with electromagnetism, but omitted the force of gravity. While developing this paper, Einstein wrote to Mileva about "our work on relative motion", and this has led some to ask whether Mileva played a part in its development. Some believe that Einstein and his wife were both aware of Henri Poincare's publishing of Relativity just a few weeks before Einstein. [See Henri Poincare and also http://www.xtxinc.com]

A fourth paper, "Does the Inertia of a Body Depend Upon Its Energy Content?", ("Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?") published late in 1905, showed one further deduction from relativity's axioms, the famous equation that the energy of a body at rest (E) equals its mass (m) times the speed of light (c) squared: E = mc2 .

Middle years

In 1906, Einstein was promoted to technical examiner second class. In 1908, Einstein was licensed in Bern, Switzerland, as a Privatdozent (unsalaried teacher at a university). Einstein's second son, Eduard, was born on July 28, 1910. In 1911, Einstein became first associate professor at the University of Zurich, and shortly afterwards full professor at the (German) University of Prague, only to return the following year to Zurich in order to become full professor at the ETH Zurich. At that time, he worked closely with the mathematician Marcel Grossmann. In 1912, Einstein started to refer to time as the fourth dimension (although H.G. Wells had done this earlier, in 1895 in The Time Machine).

In 1914, just before the start of World War I, Einstein went back to Germany and settled in Berlin as professor at the local university and became a member of the Prussian Academy of Sciences. His pacifism and Jewish origins irritated German nationalists. After he became world-famous, nationalistic hatred of him grew and for the first time he was the subject of an organized campaign to discredit his theories. From 1914 to 1933, he served as director of the Kaiser Wilhelm Institute for Physics in Berlin, and it was during this time that he was awarded his Nobel Prize and made his most groundbreaking discoveries. He was also an extraordinary professor at the Leiden University from 1920 until officially 1946, where he regularly gave guest lectures.

Einstein divorced Mileva on February 14, 1919, and married his cousin Elsa Löwenthal (born Einstein: Löwenthal was the surname of her first husband, Max) on June 2, 1919. Elsa was Albert's first cousin (maternally) and his second cousin (paternally). She was three years older than Albert, and had nursed him to health after he had suffered a partial nervous breakdown combined with a severe stomach ailment; there were no children from this marriage. The fate of Albert and Mileva's first child, Lieserl, is unknown. Some believe she died in infancy, while others believe she was given out for adoption. They later had two sons: Eduard and Hans Albert. Eduard intended to practice as a Freudian analyst but was institutionalized for schizophrenia and died in an asylum. Hans Albert, his older brother, became a professor of hydraulic engineering at the University of California, Berkeley, having little interaction with his father.

File:Einstein theory triumphs.png
"Einstein theory triumphs," declared the New York Times on November 10 1919.

General relativity

In November 1915, Einstein presented a series of lectures before the Prussian Academy of Sciences in which he described his theory of general relativity. The final lecture climaxed with his introduction of an equation that replaced Newton's law of gravity. This theory considered all observers to be equivalent, not only those moving at a uniform speed. In general relativity, gravity is no longer a force (as it is in Newton's law of gravity) but is a consequence of the curvature of space-time.

The theory provided the foundation for the study of cosmology and gave scientists the tools for understanding many features of the universe that were discovered well after Einstein's death. A truly revolutionary theory, general relativity has so far passed every test posed to it and has become a powerful tool used in the analysis of many subjects in physics.

Initially, scientists were skeptical because the theory was derived by mathematical reasoning and rational analysis, not by experiment or observation. But in 1919, predictions made using the theory were confirmed by Arthur Eddington's measurements (during a solar eclipse), of how much the light emanating from a star was bent by the Sun's gravity when it passed close to the Sun, an effect called gravitational lensing. The observations were carried out on May 29, 1919, at two locations, one in Sobral, Ceará, Brazil, and another in the island of Principe, in the west coast of Africa. On November 7, The Times reported the confirmation, cementing Einstein's fame.

Many scientists were still unconvinced for various reasons ranging from disagreement with Einstein's interpretation of the experiments, to not being able to tolerate the absence of an absolute frame of reference. In Einstein's view, many of them simply could not understand the mathematics involved. Einstein's public fame which followed the 1919 article created resentment among these scientists some of which lasted well into the 1930s.

In the early 1920s Einstein was the lead figure in a famous weekly physics colloquium at the University of Berlin. On March 30, 1921, Einstein went to New York to give a lecture on his new Theory of Relativity, the same year he was awarded the Nobel Prize. Though he is now most famous for his work on relativity, it was for his earlier work on the photoelectric effect that he was given the Prize, as his work on general relativity was still disputed. The Nobel committee decided that citing his less-contested theory in the Prize would gain more acceptance from the scientific community.

The "Copenhagen" interpretation

Einstein's relationship with quantum physics was quite remarkable. He was the first to say that quantum theory was revolutionary. His postulation that light can be described not only as a wave with no kinetic energy, but also as massless discrete packets of energy called quanta with measurable kinetic energy (now known as photons) marked a landmark break with the classical physics. In 1909 Einstein presented his first paper on the quantification of light to a gathering of physicists and told them that they must find some way to understand waves and particles together.

In the mid-1920s, as the original quantum theory was replaced with a new theory of quantum mechanics, Einstein balked at the Copenhagen interpretation of the new equations because it settled for a probabilistic, non-visualizable account of physical behaviour. Einstein agreed that the theory was the best available, but he looked for a more "complete" explanation, i.e., more deterministic. He could not abandon the belief that physics described the laws that govern "real things", the belief which had led to his successes with atoms, photons, and gravity.

In a 1926 letter to Max Born, Einstein made a remark that is now famous:

Quantum mechanics is certainly imposing. But an inner voice tells me it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the Old One. I, at any rate, am convinced that He does not throw dice.

To this, Bohr, who sparred with Einstein on quantum theory, retorted, "Stop telling God what He must do!" The Bohr-Einstein debates on foundational aspects of quantum mechanics happened during the Solvay conferences.

Einstein was not rejecting probabilistic theories per se. Einstein himself was a great statistician, using statistical analysis in his works on Brownian motion and photoelectricity and in papers published before the miraculous year 1905; Einstein had even discovered Gibbs ensembles. He believed, however, that at the core reality behaved deterministically. Many physicists argue that experimental evidence contradicting this belief was found much later with the discovery of Bell's Theorem and Bell's inequality. Nonetheless, there is still space for lively discussions about the interpretation of quantum mechanics.

Bose-Einstein statistics

In 1924, Einstein received a short paper from a young Indian physicist named Satyendra Nath Bose describing light as a gas of photons and asking for Einstein's assistance in publication. Einstein realized that the same statistics could be applied to atoms, and published an article in German (then the lingua franca of physics) which described Bose's model and explained its implications. Bose-Einstein statistics now describe any assembly of these indistinguishable particles known as bosons. The Bose-Einstein condensate phenomenon was predicted in the 1920s by Bose and Einstein, based on Bose's work on the statistical mechanics of photons, which was then formalized and generalized by Einstein. The first such condensate was produced by Eric Cornell and Carl Wieman in 1995 at the University of Colorado at Boulder. Einstein's original sketches on this theory were recovered in August 2005 in the library of Leiden University (see website with original manuscript: [7]).

Einstein also assisted Erwin Schrödinger in the development of the quantum Boltzmann distribution, a mixed classical and quantum mechanical gas model although he realized that this was less significant than the Bose-Einstein model and declined to have his name included on the paper.

The Einstein refrigerator

File:Einstein Refrigerator.png
Einstein and Szilárd's refrigerator patent diagram.

Einstein and former student Leó Szilárd co-invented a unique type of refrigerator (usually called the Einstein refrigerator) in 1926. [8] [9] On November 11, 1930, Template:US patent was awarded to Albert Einstein and Leó Szilárd. The patent covered a thermodynamic refrigeration cycle providing cooling with no moving parts, at a constant pressure, with only heat as an input. The refrigeration cycle used ammonia, butane, and water.

World War II

After Adolf Hitler came to power in 1933, expressions of hatred for Einstein reached new levels. He was accused by the National Socialist regime of creating "Jewish physics" in contrast with Deutsche Physik—"German" or "Aryan physics". Nazi physicists (notably including the Nobel laureates Johannes Stark and Philipp Lenard) continued the attempts to discredit his theories and to blacklist politically those German physicists who taught them (such as Werner Heisenberg). Einstein renounced his German citizenship and fled to the United States, where he was given permanent residency. He accepted a position at the newly founded Institute for Advanced Study in Princeton Township, New Jersey. He became an American citizen in 1940, though he still retained Swiss citizenship.

In 1939, under the encouragement of Szilárd, Einstein sent a letter to President Franklin Delano Roosevelt urging the study of nuclear fission for military purposes, under fears that the Nazi government would be first to develop atomic weapons. Roosevelt started a small investigation into the matter which eventually became the massive Manhattan Project. (For more information, see the section below on Einstein's political views.)

Institute for Advanced Study

His work at the Institute for Advanced Study focused on the unification of the laws of physics, which he referred to as the Unified Field Theory. He attempted to construct a model which would describe all of the fundamental forces as different manifestations of a single force. His attempt was hindered because the strong and weak nuclear forces were not understood independently until around 1970, fifteen years after Einstein's death. Einstein's goal of unifying the laws of physics under a single model survives in the current drive for unification of the forces, embodied most notably by string theory.

Generalized theory

Einstein began to form a generalized theory of gravitation with the Universal Law of Gravitation and the electromagnetic force in his first attempt to demonstrate the unification and simplification of the fundamental forces. In 1950 he described his work in a Scientific American article. Einstein was guided by a belief in a single statistical measure of variance for the entire set of physical laws.

Einstein's Generalized Theory of Gravitation is a universal mathematical approach to field theory. He investigated reducing the different phenomena by the process of logic to something already known or evident. Einstein tried to unify gravity and electromagnetism in a way that also led to a new subtle understanding of quantum mechanics.

Einstein postulated a four-dimensional space-time continuum expressed in axioms represented by five component vectors. Particles appear in his research as a limited region in space in which the field strength or the energy density are particularly high. Einstein treated subatomic particles as objects embedded in the unified field, influencing it and existing as an essential constituent of the unified field but not of it. Einstein also investigated a natural generalization of symmetrical tensor fields, treating the combination of two parts of the field as being a natural procedure of the total field and not the symmetrical and antisymmetrical parts separately. He researched a way to delineate the equations and systems to be derived from a variational principle.

Einstein became increasingly isolated in his research on a generalised theory of gravitation and was ultimately unsuccessful in his attempts.

File:Einstein house in Princeton.jpg
Einstein's two-story house, white frame with front porch in Greek revival style, in Princeton (112 Mercer Street).

Final years

In 1948, Einstein served on the original committee which resulted in the founding of Brandeis University. A portrait of Einstein was taken by Yousuf Karsh on February 11 of that same year. In 1952, the Israeli government proposed to Einstein that he take the post of second president. He declined the offer, and remains the only United States citizen ever to be offered a position as a foreign head of state. On March 30, 1953, Einstein released a revised unified field theory.

He died at 1:15 AM[10] in Princeton hospital[11] in Princeton, New Jersey, on April 18, 1955, leaving the Generalized Theory of Gravitation unsolved. The only person present at his deathbed, a hospital nurse, said that just before his death he mumbled several words in German that she did not understand. He was cremated without ceremony on the same day he died at Trenton, New Jersey, in accordance with his wishes. His ashes were scattered at an undisclosed location.

His brain was preserved by Dr. Thomas Stoltz Harvey, the pathologist who performed the autopsy on Einstein. Harvey found nothing unusual with his brain, but in 1999 further analysis by a team at McMaster University revealed that his parietal operculum region was missing and, to compensate, his inferior parietal lobe was 15% wider than normal [12]. The inferior parietal region is responsible for mathematical thought, visuospatial cognition, and imagery of movement. Einstein's brain also contained 73% more glial cells than the average brain.

Personality

Albert Einstein was much respected for his kind and friendly demeanor rooted in his pacifism. He was modest about his abilities, and had distinctive attitudes and fashions—for example, he minimized his wardrobe so that he would not need to waste time in deciding on what to wear. He occasionally had a playful sense of humor, and enjoyed sailing and playing the violin. He was also the stereotypical "absent-minded professor"; he was often forgetful of everyday items, such as keys, and would focus so intently on solving physics problems that he would often become oblivious to his surroundings. In his later years, his appearance inadvertently created (or reflected) another stereotype of scientist in the process: the researcher with unruly white hair.

Religious views

Although he was raised Jewish, he was not a believer in the religious aspect of Judaism, though he still considered himself a Jew. He simply admired the beauty of nature and the universe. From a letter written in English, dated March 24, 1954, Einstein wrote, "It was, of course, a lie what you read about my religious convictions, a lie which is being systematically repeated. I do not believe in a personal God and I have never denied this but have expressed it clearly. If something is in me which can be called religious then it is the unbounded admiration for the structure of the world so far as our science can reveal it."

He also said (in an essay reprinted in Living Philosophies, vol. 13 (1931)): "A knowledge of the existence of something we cannot penetrate, our perceptions of the profoundest reason and the most radiant beauty, which only in their most primitive forms are accessible to our minds—it is this knowledge and this emotion that constitute true religiosity; in this sense, and this [sense] alone, I am a deeply religious man."

The following is a response made to Rabbi Herbert Goldstein of the International Synagogue in New York which read, "I believe in Spinoza's God who reveals himself in the orderly harmony of what exists, not in a God who concerns himself with the fates and actions of human beings." After being pressed on his religious views by Martin Buber, Einstein exclaimed, "What we [physicists] strive for is just to draw His lines after Him." He also quoted once "When I read the Bhagavad Gita, I ask myself how God created the universe. Everything else seems superfluous." Summarizing his religious beliefs, he once said: "My religion consists of a humble admiration of the illimitable superior spirit who reveals himself in the slight details we are able to perceive with our frail and feeble mind."

Einstein was an Honorary Associate of the Rationalist Press Association beginning in 1934.

Political views

Einstein considered himself a pacifist [13] and humanitarian [14], and in later years, a committed democratic socialist. He once said, "I believe Gandhi's views were the most enlightened of all the political men of our time. We should strive to do things in his spirit: not to use violence for fighting for our cause, but by non-participation of anything you believe is evil." Einstein's views on other issues, including socialism, McCarthyism and racism, were controversial (see Einstein on socialism). In a 1949 article, Albert Einstein described the "predatory phase of human development", exemplified by a chaotic capitalist society, as a source of evil to be overcome. He disapproved of the totalitarian regimes in the Soviet Union and elsewhere, and argued in favor of a democratic socialist system which would combine a planned economy with a deep respect for human rights. Einstein was a co-founder of the liberal German Democratic Party.

Einstein was very much involved in the Civil Rights movement. He was a close friend of Paul Robeson for over 20 years. Einstein was a member of several civil rights groups (including the Princeton chapter of the NAACP) many of which were headed by Paul Robeson. He served as co-chair with Paul Robeson of the American Crusade to End Lynching. When W.E.B. DuBois was frivolously charged with being a communist spy during the McCarthy era while he was in his 80s, Einstein volunteered as a character witness in the case. The case was dismissed shortly after it was announced that he was to appear in that capacity. Einstein was quoted as saying that "racism is America's greatest disease".

The U.S. FBI kept a 1,427 page file on his activities and recommended that he be barred from immigrating to the United States under the Alien Exclusion Act, alleging that Einstein "believes in, advises, advocates, or teaches a doctrine which, in a legal sense, as held by the courts in other cases, 'would allow anarchy to stalk in unmolested' and result in 'government in name only'", among other charges. They also alleged that Einstein "was a member, sponsor, or affiliated with thirty-four communist fronts between 1937-1954" and "also served as honorary chairman for three communist organizations."[15] It should be noted that many of the documents in the file were submitted to the FBI, mainly by civilian political groups, and not actually written by FBI officials.

File:EinsteinSzilard.jpg
In 1939, Einstein signed a letter, written by Leó Szilárd, to President Roosevelt arguing that the United States should start funding research into the development of nuclear weapons.

Einstein opposed tyrannical forms of government, and for this reason (and his Jewish background), opposed the Nazi regime and fled Germany shortly after it came to power. At the same time, Einstein's anarchist nephew Carl Einstein, who shared many of his views was fighting the fascists in the Spanish Civil War. Einstein initially favored construction of the atomic bomb, in order to ensure that Hitler did not do so first, and even sent a letter to President Roosevelt (dated August 2, 1939, before World War II broke out, and probably written by Leó Szilárd) encouraging him to initiate a program to create a nuclear weapon. Roosevelt responded to this by setting up a committee for the investigation of using uranium as a weapon, which in a few years was superseded by the Manhattan Project.

After the war, though, Einstein lobbied for nuclear disarmament and a world government: "I do not know how the Third World War will be fought, but I can tell you what they will use in the Fourth—rocks!"[16]

Einstein was a supporter of Zionism. He supported Jewish settlement of the ancient seat of Judaism and was active in the establishment of the Hebrew University in Jerusalem, which published (1930) a volume titled About Zionism: Speeches and Lectures by Professor Albert Einstein, and to which Einstein bequeathed his papers. However, he opposed nationalism and expressed skepticism about whether a Jewish nation-state was the best solution. He may have imagined Jews and Arabs living peacefully in the same land. In later life, in 1952, he was offered the post of second president of the newly created state of Israel, but declined the offer, claiming that he lacked the necessary people skills. Einstein was disturbed by the violence taking place in the Palestine after the Second World War and expressed that he was disappointed with the Jewish Ultra-Nationalist Organization (Irgun and Stern Gang). Nonetheless, Einstein remained deeply committed to the welfare of Israel and the Jewish people for the rest of his life.

Einstein, along with Albert Schweitzer and Bertrand Russell, fought against nuclear tests and bombs. As his last public act, and just days before his death, he signed the Russell-Einstein Manifesto, which led to the Pugwash Conferences on Science and World Affairs. His letter to Russell read:

Dear Bertrand Russell,
Thank you for your letter of April 5. I am gladly willing to sign your excellent statement. I also agree with your choice of the prospective signers.
With kind regards, A. Einstein

Popularity and cultural impact

Einstein's popularity has led to widespread use of Einstein in advertising and merchandising, including the registration of "Albert Einstein" as a trademark.

File:Einstongue.jpg
The photo (detail from the original) of this humorous expression was taken during Einstein's birthday on March 14, 1951, UPI

Entertainment

Albert Einstein has become the subject of a number of novels, films and plays, including Nicolas Roeg's film Insignificance, Fred Schepisi's film I.Q., Alan Lightman's novel Einstein's Dreams, and Steve Martin's comedic play "Picasso at the Lapin Agile". He was the subject of Philip Glass's groundbreaking 1976 opera Einstein on the Beach. Since 1978, Einstein's humorous side has been the subject of a live stage presentation Albert Einstein: The Practical Bohemian, a one man show performed by actor Ed Metzger.

He is often used as a model for depictions of eccentric scientists in works of fiction; his own character and distinctive hairstyle suggest eccentricity, or even lunacy and are widely copied or exaggerated. TIME magazine writer Frederic Golden referred to Einstein as "a cartoonist's dream come true."

On Einstein's 72nd birthday in 1951, the UPI photographer Arthur Sasse was trying to coax him into smiling for the camera. Having done this for the photographer many times that day, Einstein stuck out his tongue instead [17]. The image has become an icon in pop culture for its contrast of the genius scientist displaying a moment of levity. Yahoo Serious, an Australian film maker, used the photo as an inspiration for the intentionally anachronistic movie Young Einstein.

Licensing

Einstein bequeathed his estate, as well as the use of his image (see personality rights), to the Hebrew University of Jerusalem.[18] Einstein actively supported the university during his life and this support continues with the royalties received from licensing activities. The Roger Richman Agency licences the commercial use of the name "Albert Einstein" and associated imagery and likenesses of Einstein, as agent for the Hebrew University of Jerusalem. As head licensee the agency can control commercial usage of Einstein's name which does not comply with certain standards (e.g., when Einstein's name is used as a trademark, the ™ symbol must be used [19]). As of May, 2005, the Roger Richman Agency was acquired by Corbis.

Honors

File:Einstein TIME Person of the Century.jpg
Einstein on the cover of TIME as Person of the Century.

Einstein has received a number of posthumous honors. For example:

Among Einstein's many namesakes are:

References

  1. ^  Template:Book reference
  2. ^  Template:Web reference
  3. ^  Template:Journal reference
  4. ^  Template:Web reference
  5. ^  Template:Journal reference
  6. ^  Template:Web reference
  7. ^  Template:Web reference
  8. ^  Template:Web reference
  9. ^  Template:Web reference
  10. ^  Template:Web reference
  11. ^  Template:Web reference
  12. ^  Template:Web reference
  13. ^  Template:Web reference
  14. ^  Template:Web reference
  15. ^  Template:Web reference
  16. ^  Template:Book reference
  17. ^  Template:Web reference
  18. ^  Template:Web reference

Works by Albert Einstein

See Also

External links

Template:Sisterlinks

<span class="FA" id="de" style="display:none;" />

<span class="FA" id="cs" style="display:none;" />af:Albert Einstein ar:أينشتاين an:Albert Einstein ast:Albert Einstein bg:Алберт Айнщайн be:Альбэрт Эйнштэйн bn:আলবার্ট আইনস্টাইন bs:Albert Einstein br:Albert Einstein ca:Albert Einstein cs:Albert Einstein da:Albert Einstein de:Albert Einstein et:Albert Einstein el:Άλμπερτ Αϊνστάιν es:Albert Einstein<span class="FA" id="es" style="display:none;" />

eo:Albert EINSTEIN eu:Albert Einstein fa:آلبرت اینشتین fr:Albert Einstein ga:Albert Einstein gl:Albert Einstein ko:알베르트 아인슈타인 hr:Albert Einstein ilo:Albert Einstein io:Albert Einstein id:Albert Einstein ia:Albert Einstein it:Albert Einstein he:אלברט איינשטיין<span class="FA" id="he" style="display:none;" />

jv:Albert Einstein kn:ಆಲ್ಬರ್ಟ್ ಐನ್ಸ್ಟನ್ ka:აინშტაინი, ალბერტ ku:Albert Einstein la:Albertus Einstein lv:Alberts Einšteins lt:Albertas Einšteinas lb:Albert Einstein hu:Albert Einstein mk:Алберт Ајнштајн mr:अल्बर्ट आईन्स्टाईन ms:Albert Einstein nl:Albert Einstein nds:Albert Einstein ja:アルベルト・アインシュタイン no:Albert Einstein nn:Albert Einstein pl:Albert Einstein pt:Albert Einstein <span class="FA" id="pt" style="display:none;" />

ro:Albert Einstein ru:Эйнштейн, Альберт sco:Albert Einstein sq:Albert Ajnshtajni scn:Albert Einstein simple:Albert Einstein sk:Albert Einstein sl:Albert Einstein sr:Алберт Ајнштајн fi:Albert Einstein sv:Albert Einstein tl:Albert Einstein ta:அல்பர்ட் ஐன்ஸ்டீன் tt:Albert Einstein th:อัลเบิร์ต ไอน์สไตน์ vi:Albert Einstein <span class="FA" id="vi" style="display:none;" />

tpi:Albert Einstein tr:Albert Einstein uk:Айнштейн Альберт zh:阿尔伯特·爱因斯坦

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox